Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.075
Filtrar
1.
J Cell Sci ; 137(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38477372

RESUMO

Biogenesis of inclusion bodies (IBs) facilitates protein quality control (PQC). Canonical aggresomes execute degradation of misfolded proteins while non-degradable amyloids sequester into insoluble protein deposits. Lewy bodies (LBs) are filamentous amyloid inclusions of α-synuclein, but PQC benefits and drawbacks associated with LB-like IBs remain underexplored. Here, we report that crosstalk between filamentous LB-like IBs and aggresome-like IBs of α-synuclein (Syn-aggresomes) buffer the load, aggregation state, and turnover of the amyloidogenic protein in mouse primary neurons and HEK293T cells. Filamentous LB-like IBs possess unorthodox PQC capacities of self-quarantining α-synuclein amyloids and being degradable upon receding fresh amyloidogenesis. Syn-aggresomes equilibrate biogenesis of filamentous LB-like IBs by facilitating spontaneous degradation of α-synuclein and conditional turnover of disintegrated α-synuclein amyloids. Thus, both types of IB primarily contribute to PQC. Incidentally, the overgrown perinuclear LB-like IBs become degenerative once these are misidentified by BICD2, a cargo-adapter for the cytosolic motor-protein dynein. Microscopy indicates that microtubules surrounding the perinuclear filamentous inclusions are also distorted, misbalancing the cytoskeleton-nucleoskeleton tension leading to widespread lamina injuries. Together, nucleocytoplasmic mixing, DNA damage, and deregulated transcription of stress chaperones defeat the proteostatic purposes of the filamentous amyloids of α-synuclein.


Assuntos
Lâmina Nuclear , alfa-Sinucleína , Humanos , Camundongos , Animais , alfa-Sinucleína/metabolismo , Lâmina Nuclear/metabolismo , Células HEK293 , Corpos de Inclusão/metabolismo , Amiloide/metabolismo , Proteínas Amiloidogênicas/metabolismo
2.
Microb Cell Fact ; 23(1): 48, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38347541

RESUMO

BACKGROUND: The three-finger proteins are a collection of disulfide bond rich proteins of great biomedical interests. Scalable recombinant expression and purification of bioactive three-finger proteins is quite difficult. RESULTS: We introduce a working pipeline for expression, purification and validation of disulfide-bond rich three-finger proteins using E. coli as the expression host. With this pipeline, we have successfully obtained highly purified and bioactive recombinant α-Βungarotoxin, k-Bungarotoxin, Hannalgesin, Mambalgin-1, α-Cobratoxin, MTα, Slurp1, Pate B etc. Milligrams to hundreds of milligrams of recombinant three finger proteins were obtained within weeks in the lab. The recombinant proteins showed specificity in binding assay and six of them were crystallized and structurally validated using X-ray diffraction protein crystallography. CONCLUSIONS: Our pipeline allows refolding and purifying recombinant three finger proteins under optimized conditions and can be scaled up for massive production of three finger proteins. As many three finger proteins have attractive therapeutic or research interests and due to the extremely high quality of the recombinant three finger proteins we obtained, our method provides a competitive alternative to either their native counterparts or chemically synthetic ones and should facilitate related research and applications.


Assuntos
Escherichia coli , Corpos de Inclusão , Escherichia coli/metabolismo , Proteínas Recombinantes , Corpos de Inclusão/metabolismo , Dissulfetos/metabolismo
3.
PLoS Genet ; 20(2): e1011138, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38315730

RESUMO

The presence of large protein inclusions is a hallmark of neurodegeneration, and yet the precise molecular factors that contribute to their formation remain poorly understood. Screens using aggregation-prone proteins have commonly relied on downstream toxicity as a readout rather than the direct formation of aggregates. Here, we combined a genome-wide CRISPR knockout screen with Pulse Shape Analysis, a FACS-based method for inclusion detection, to identify direct modifiers of TDP-43 aggregation in human cells. Our screen revealed both canonical and novel proteostasis genes, and unearthed SRRD, a poorly characterized protein, as a top regulator of protein inclusion formation. APEX biotin labeling reveals that SRRD resides in proximity to proteins that are involved in the formation and breakage of disulfide bonds and to intermediate filaments, suggesting a role in regulation of the spatial dynamics of the intermediate filament network. Indeed, loss of SRRD results in aberrant intermediate filament fibrils and the impaired formation of aggresomes, including blunted vimentin cage structure, during proteotoxic stress. Interestingly, SRRD also localizes to aggresomes and unfolded proteins, and rescues proteotoxicity in yeast whereby its N-terminal low complexity domain is sufficient to induce this affect. Altogether this suggests an unanticipated and broad role for SRRD in cytoskeletal organization and cellular proteostasis.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Filamentos Intermediários , Humanos , Filamentos Intermediários/genética , Filamentos Intermediários/metabolismo , Citoesqueleto/genética , Corpos de Inclusão/genética , Corpos de Inclusão/metabolismo
4.
J Biotechnol ; 379: 65-77, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38036002

RESUMO

A broad application spectrum ranging from clinical diagnostics to biosensors in a variety of sectors, makes the enzyme Lactate dehydrogenase (LDH) highly interesting for recombinant protein production. Expression of recombinant LDH is currently mainly carried out in uncontrolled shake-flask cultivations leading to protein that is mostly produced in its soluble form, however in rather low yields. Inclusion body (IB) processes have gathered a lot of attention due to several benefits like increased space-time yields and high purity of the target product. Thus, to investigate the suitability of this processing strategy for ldhL1 production, a fed-batch fermentation steering the production of IBs rather than soluble product formation was developed. It was shown that the space-time-yield of the fermentation could be increased almost 3-fold by increasing qs to 0.25 g g-1 h-1 which corresponds to 21% of qs,max, and keeping the temperature at 37°C after induction. Solubilization and refolding unit operations were developed to regain full bioactivity of the ldhL1. The systematic approach in screening for solubilization and refolding conditions revealed buffer compositions and processing strategies that ultimately resulted in 50% product recovery in the refolding step, revealing major optimization potential in the downstream processing chain. The recovered ldhL1 showed an optimal activity at pH 5.5 and 30∘C with a high catalytic activity and KM values of 0.46 mM and 0.18 mM for pyruvate and NADH, respectively. These features, show that the here produced LDH is a valuable source for various commercial applications, especially considering low pH-environments.


Assuntos
Corpos de Inclusão , L-Lactato Desidrogenase , L-Lactato Desidrogenase/genética , L-Lactato Desidrogenase/metabolismo , Proteínas Recombinantes/química , Corpos de Inclusão/metabolismo , Fermentação
5.
Biotechnol Bioeng ; 121(2): 535-550, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37927002

RESUMO

A new platform has been developed to facilitate the production of biologically active proteins and peptides in Escherichia coli. The platform includes an N-terminal self-associating L6 KD peptide fused to the SUMO protein (small ubiquitin-like protein modifier) from the yeast Saccharomyces cerevisiae, which is known for its chaperone activity. The target proteins are fused at the C termini of the L6 KD-SUMO fusions, and the resulting three-component fusion proteins are synthesized and self-assembled in E. coli into so-called active inclusion bodies (AIBs). In vivo, the L6 KD-SUMO platform facilitates the correct folding of the target proteins and directs them into AIBs, greatly simplifying their purification. In vitro, the platform facilitates the effective separation of AIBs by centrifugation and subsequent target protein release using SUMO-specific protease. The properties of the AIBs were determined using five proteins with different sizes, folding efficiencies, quaternary structure, and disulfide modifications. Electron microscopy shows that AIBs are synthesized in the form of complex fibrillar structures resembling "loofah sponges" with unusually thick filaments. The obtained results indicate that the new platform has promising features and could be developed to facilitate the synthesis and purification of target proteins and protein complexes without the use of renaturation.


Assuntos
Escherichia coli , Peptídeos , Escherichia coli/genética , Escherichia coli/metabolismo , Peptídeos/metabolismo , Dobramento de Proteína , Endopeptidases/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Corpos de Inclusão/genética , Corpos de Inclusão/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
6.
Ann Clin Transl Neurol ; 11(3): 577-592, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38158701

RESUMO

OBJECTIVE: Multisystem proteinopathy type 3 (MSP3) is an inherited, pleiotropic degenerative disorder caused by a mutation in heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1), which can affect the muscle, bone, and/or nervous system. This study aimed to determine detailed histopathological features and transcriptomic profile of HNRNPA1-mutated skeletal muscles to reveal the core pathomechanism of hereditary inclusion body myopathy (hIBM), a predominant phenotype of MSP3. METHODS: Histopathological analyses and RNA sequencing of HNRNPA1-mutated skeletal muscles harboring a c.940G > A (p.D314N) mutation (NM_031157) were performed, and the results were compared with those of HNRNPA1-unlinked hIBM and control muscle tissues. RESULTS: RNA sequencing revealed aberrant alternative splicing events that predominantly occurred in myofibril components and mitochondrial respiratory complex. Enrichment analyses identified the nuclear pore complex (NPC) and nucleocytoplasmic transport as suppressed pathways. These two pathways were linked by the hub genes NUP50, NUP98, NUP153, NUP205, and RanBP2. In immunohistochemistry, these nucleoporin proteins (NUPs) were mislocalized to the cytoplasm and aggregated mostly with TAR DNA-binding protein 43 kDa and, to a lesser extent, with hnRNPA1. Based on ultrastructural observation, irregularly shaped myonuclei with deep invaginations were frequently observed in atrophic fibers, consistent with the disorganization of NPCs. Additionally, regarding the expression profiles of overall NUPs, reduced expression of NUP98, NUP153, and RanBP2 was shared with HNRNPA1-unlinked hIBMs. INTERPRETATION: The shared subset of altered NUPs in amyotrophic lateral sclerosis (ALS), as demonstrated in prior research, HNRNPA1-mutated, and HNRNPA1-unlinked hIBM muscle tissues may provide evidence regarding the underlying common nuclear pore pathology of hIBM, ALS, and MSP.


Assuntos
Esclerose Amiotrófica Lateral , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B , Doenças Musculares , Humanos , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/metabolismo , Esclerose Amiotrófica Lateral/genética , Poro Nuclear/metabolismo , Poro Nuclear/patologia , Músculo Esquelético/metabolismo , Corpos de Inclusão/metabolismo , Corpos de Inclusão/patologia , Doenças Musculares/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo
7.
Mol Neurodegener ; 18(1): 80, 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37940962

RESUMO

Peptides and their mimetics are increasingly recognised as drug-like molecules, particularly for intracellular protein-protein interactions too large for inhibition by small molecules, and inaccessible to larger biologics. In the past two decades, evidence associating the misfolding and aggregation of alpha-synuclein strongly implicates this protein in disease onset and progression of Parkinson's disease and related synucleinopathies. The subsequent formation of toxic, intracellular, Lewy body deposits, in which alpha-synuclein is a major component, is a key diagnostic hallmark of the disease. To reach their therapeutic site of action, peptides must both cross the blood-brain barrier and enter dopaminergic neurons to prevent the formation of these intracellular inclusions. In this review, we describe and summarise the current efforts made in the development of peptides and their mimetics to directly engage with alpha-synuclein with the intention of modulating aggregation, and importantly, toxicity. This is a rapidly expanding field with great socioeconomic impact; these molecules harbour significant promise as therapeutics, or as early biomarkers during prodromal disease stages, or both. As these are age-dependent conditions, an increasing global life expectancy means disease prevalence is rising. No current treatments exist to either prevent or slow disease progression. It is therefore crucial that drugs are developed for these conditions before health care and social care capacities become overrun.


Assuntos
Doença de Parkinson , Sinucleinopatias , Humanos , Doença de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , Corpos de Inclusão/metabolismo , Peptídeos
8.
Sci Adv ; 9(46): eadi8716, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37976362

RESUMO

Recent studies have identified increasing levels of nanoplastic pollution in the environment. Here, we find that anionic nanoplastic contaminants potently precipitate the formation and propagation of α-synuclein protein fibrils through a high-affinity interaction with the amphipathic and non-amyloid component (NAC) domains in α-synuclein. Nanoplastics can internalize in neurons through clathrin-dependent endocytosis, causing a mild lysosomal impairment that slows the degradation of aggregated α-synuclein. In mice, nanoplastics combine with α-synuclein fibrils to exacerbate the spread of α-synuclein pathology across interconnected vulnerable brain regions, including the strong induction of α-synuclein inclusions in dopaminergic neurons in the substantia nigra. These results highlight a potential link for further exploration between nanoplastic pollution and α-synuclein aggregation associated with Parkinson's disease and related dementias.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Camundongos , Animais , alfa-Sinucleína/metabolismo , Doença de Parkinson/metabolismo , Microplásticos , Corpos de Inclusão/metabolismo , Neurônios Dopaminérgicos/metabolismo
9.
Biochem J ; 480(19): 1583-1598, 2023 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-37747814

RESUMO

Inclusion body formation is associated with cytotoxicity in a number of neurodegenerative diseases. However, the molecular basis of the toxicity caused by the accumulation of aggregation-prone proteins remains controversial. In this study, we found that disease-associated inclusions induced by elongated polyglutamine chains disrupt the complex formation of BAG6 with UBL4A, a mammalian homologue of yeast Get5. UBL4A also dissociated from BAG6 in response to proteotoxic stresses such as proteasomal inhibition and mitochondrial depolarization. These findings imply that the cytotoxicity of pathological protein aggregates might be attributed in part to disruption of the BAG6-UBL4A complex that is required for the biogenesis of tail-anchored proteins.


Assuntos
Corpos de Inclusão , Chaperonas Moleculares , Estresse Proteotóxico , Ubiquitinas , Animais , Chaperonas Moleculares/metabolismo , Ubiquitinas/genética , Ubiquitinas/metabolismo , Corpos de Inclusão/metabolismo
10.
J Neurosci ; 43(47): 8058-8072, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37748861

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease affecting motor neurons. Recently, genome-wide association studies identified KIF5A as a new ALS-causing gene. KIF5A encodes a protein of the kinesin-1 family, allowing the anterograde transport of cargos along the microtubule rails in neurons. In ALS patients, mutations in the KIF5A gene induce exon 27 skipping, resulting in a mutated protein with a new C-terminal region (KIF5A Δ27). To understand how KIF5A Δ27 underpins the disease, we developed an ALS-associated KIF5A Drosophila model. When selectively expressed in motor neurons, KIF5A Δ27 alters larval locomotion as well as morphology and synaptic transmission at neuromuscular junctions in both males and females. We show that the distribution of mitochondria and synaptic vesicles is profoundly disturbed by KIF5A Δ27 expression. That is consistent with the numerous KIF5A Δ27-containing inclusions observed in motor neuron soma and axons. Moreover, KIF5A Δ27 expression leads to motor neuron death and reduces life expectancy. Our in vivo model reveals that a toxic gain of function underlies the pathogenicity of ALS-linked KIF5A mutant.SIGNIFICANCE STATEMENT Understanding how a mutation identified in patients with amyotrophic lateral sclerosis (ALS) causes the disease and the loss of motor neurons is crucial to fight against this disease. To this end, we have created a Drosophila model based on the motor neuron expression of the KIF5A mutant gene, recently identified in ALS patients. KIF5A encodes a kinesin that allows the anterograde transport of cargos. This model recapitulates the main features of ALS, including alterations of locomotion, synaptic neurotransmission, and morphology at neuromuscular junctions, as well as motor neuron death. KIF5A mutant is found in cytoplasmic inclusions, and its pathogenicity is because of a toxic gain of function.


Assuntos
Esclerose Amiotrófica Lateral , Doenças Neurodegenerativas , Masculino , Animais , Feminino , Humanos , Esclerose Amiotrófica Lateral/genética , Esclerose Amiotrófica Lateral/metabolismo , Cinesinas/genética , Cinesinas/metabolismo , Estudo de Associação Genômica Ampla , Doenças Neurodegenerativas/metabolismo , Neurônios Motores/metabolismo , Junção Neuromuscular/metabolismo , Mutação/genética , Drosophila/metabolismo , Corpos de Inclusão/metabolismo
11.
Sci Adv ; 9(31): eadf6895, 2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-37540751

RESUMO

The cytoplasmic aggregation of TAR DNA binding protein-43 (TDP-43), also known as TDP-43 pathology, is the pathological hallmark of amyotrophic lateral sclerosis (ALS). However, the mechanism underlying TDP-43 cytoplasmic mislocalization and subsequent aggregation remains unclear. Here, we show that TDP-43 dimerization/multimerization is impaired in the postmortem brains and spinal cords of patients with sporadic ALS and that N-terminal dimerization-deficient TDP-43 consists of pathological inclusion bodies in ALS motor neurons. Expression of N-terminal dimerization-deficient mutant TDP-43 in Neuro2a cells and induced pluripotent stem cell-derived motor neurons recapitulates TDP-43 pathology, such as Nxf1-dependent cytoplasmic mislocalization and aggregate formation, which induces seeding effects. Furthermore, TDP-DiLuc, a bimolecular luminescence complementation reporter assay, could detect decreased N-terminal dimerization of TDP-43 before TDP-43 pathological changes caused by the transcription inhibition linked to aberrant RNA metabolism in ALS. These findings identified TDP-43 monomerization as a critical determinant inducing TDP-43 pathology in ALS.


Assuntos
Esclerose Amiotrófica Lateral , Humanos , Esclerose Amiotrófica Lateral/genética , Esclerose Amiotrófica Lateral/patologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Corpos de Inclusão/metabolismo , Neurônios Motores/metabolismo
12.
Protein Expr Purif ; 211: 106328, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37392905

RESUMO

High yield purification of Ulp1 is required during the isolation and purification of SUMO-tagged recombinant proteins. However, when expressed as a soluble protein, Ulp1 is toxic to E. coli host cells and most of the protein forms inclusion bodies. The extraction of insoluble Ulp1 followed by its purification and refolding into its active form is a lengthy and costly procedure. In our present study, we developed a simple, cost effective procedure for the large scale production of active Ulp1 that can be used for industrial scale requirements.


Assuntos
Escherichia coli , Peptídeo Hidrolases , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Peptídeo Hidrolases/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Corpos de Inclusão/genética , Corpos de Inclusão/metabolismo
13.
Cell Rep ; 42(8): 112822, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37471224

RESUMO

C9orf72 repeat expansions are the most common genetic cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). Poly(GR) proteins are toxic to neurons by forming cytoplasmic inclusions that sequester RNA-binding proteins including stress granule (SG) proteins. However, little is known of the factors governing poly(GR) inclusion formation. Here, we show that poly(GR) infiltrates a finely tuned network of protein-RNA interactions underpinning SG formation. It interacts with G3BP1, the key driver of SG assembly and a protein we found is critical for poly(GR) inclusion formation. Moreover, we discovered that N6-methyladenosine (m6A)-modified mRNAs and m6A-binding YTHDF proteins not only co-localize with poly(GR) inclusions in brains of c9FTD/ALS mouse models and patients with c9FTD, they promote poly(GR) inclusion formation via the incorporation of RNA into the inclusions. Our findings thus suggest that interrupting interactions between poly(GR) and G3BP1 or YTHDF1 proteins or decreasing poly(GR) altogether represent promising therapeutic strategies to combat c9FTD/ALS pathogenesis.


Assuntos
Esclerose Amiotrófica Lateral , Demência Frontotemporal , Animais , Camundongos , Humanos , Esclerose Amiotrófica Lateral/patologia , DNA Helicases/metabolismo , Grânulos de Estresse , Expansão das Repetições de DNA , Proteínas de Ligação a Poli-ADP-Ribose/genética , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , RNA Helicases/genética , RNA Helicases/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Demência Frontotemporal/metabolismo , Corpos de Inclusão/metabolismo , Proteínas de Choque Térmico/metabolismo , RNA/metabolismo , Proteína C9orf72/genética , Proteína C9orf72/metabolismo
14.
Microb Cell Fact ; 22(1): 111, 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37296442

RESUMO

BACKGROUND: Lactic Acid Bacteria such as Lactococcus lactis, Latilactobacillus sakei (basonym: Lactobacillus sakei) and Lactiplantibacillus plantarum (basonym: Lactobacillus plantarum) have gained importance as recombinant cell factories. Although it was believed that proteins produced in these lipopolysaccharides (LPS)-free microorganisms do not aggregate, it has been shown that L. lactis produce inclusion bodies (IBs) during the recombinant production process. These protein aggregates contain biologically active protein, which is slowly released, being a biomaterial with a broad range of applications including the obtainment of soluble protein. However, the aggregation phenomenon has not been characterized so far in L. plantarum. Thus, the current study aims to determine the formation of protein aggregates in L. plantarum and evaluate their possible applications. RESULTS: To evaluate the formation of IBs in L. plantarum, the catalytic domain of bovine metalloproteinase 9 (MMP-9cat) protein has been used as model protein, being a prone-to-aggregate (PTA) protein. The electron microscopy micrographs showed the presence of electron-dense structures in L. plantarum cytoplasm, which were further purified and analyzed. The ultrastructure of the isolated protein aggregates, which were smooth, round and with an average size of 250-300 nm, proved that L. plantarum also forms IBs under recombinant production processes of PTA proteins. Besides, the protein embedded in these aggregates was fully active and had the potential to be used as a source of soluble protein or as active nanoparticles. The activity determination of the soluble protein solubilized from these IBs using non-denaturing protocols proved that fully active protein could be obtained from these protein aggregates. CONCLUSIONS: These results proved that L. plantarum forms aggregates under recombinant production conditions. These aggregates showed the same properties as IBs formed in other expression systems such as Escherichia coli or L. lactis. Thus, this places this LPS-free microorganism as an interesting alternative to produce proteins of interest for the biopharmaceutical industry, which are obtained from the IBs in an important number of cases.


Assuntos
Corpos de Inclusão , Lactobacillus plantarum , Animais , Bovinos , Escherichia coli/metabolismo , Corpos de Inclusão/metabolismo , Lactobacillus plantarum/metabolismo , Agregados Proteicos , Proteínas Recombinantes
15.
FEBS Lett ; 597(12): 1667-1676, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37177801

RESUMO

Aggregation of the 43 kDa TAR DNA-binding protein (TDP-43) is a pathological hallmark of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). RNA binding and TDP-43 N-terminal domain dimerisation has been suggested to ameliorate TDP-43 aggregation. However, the relationship between these factors and the solubility of TDP-43 is largely unknown. Therefore, we developed new oligonucleotides that can recruit two TDP-43 molecules and interfere with their intermolecular interactions via spatial separation. Using these oligonucleotides and TDP-43-preferable UG-repeats, we uncovered two distinct mechanisms for modulating TDP-43 solubility by RNA binding: One is N-terminal domain dimerisation, and the other is the spatial separation of two TDP-43 molecules. This study provides new molecular insights into the regulation of TDP-43 solubility.


Assuntos
Esclerose Amiotrófica Lateral , Degeneração Lobar Frontotemporal , Humanos , Proteínas de Ligação a DNA/metabolismo , Esclerose Amiotrófica Lateral/metabolismo , Degeneração Lobar Frontotemporal/metabolismo , Corpos de Inclusão/metabolismo , RNA/genética , RNA/metabolismo
16.
Biochim Biophys Acta Gene Regul Mech ; 1866(2): 194932, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36997115

RESUMO

The spatiotemporal sequestration of misfolded proteins is a mechanism by which cells counterbalance proteome homeostasis upon exposure to various stress stimuli. Chronic inhibition of proteasomes results in a large, juxtanuclear, membrane-less inclusion, known as the aggresome. Although the molecular mechanisms driving its formation, clearance, and pathophysiological implications are continuously being uncovered, the biophysical aspects of aggresomes remain largely uncharacterized. Using fluorescence recovery after photobleaching and liquid droplet disruption assays, we found that the aggresomes are a homogeneously blended condensates with liquid-like properties similar to droplets formed via liquid-liquid phase separation. However, unlike fluidic liquid droplets, aggresomes have more viscosity and hydrogel-like characteristics. We also observed that the inhibition of aggresome formation using microtubule-disrupting agents resulted in less soluble and smaller cytoplasmic speckles, which was associated with marked cytotoxicity. Therefore, the aggresome appears to be cytoprotective and serves as a temporal reservoir for dysfunctional proteasomes and substrates that need to be degraded. Our results suggest that the aggresome assembles through distinct and potentially sequential processes of energy-dependent retrograde transportation and spontaneous condensation into a hydrogel.


Assuntos
Hidrogéis , Complexo de Endopeptidases do Proteassoma , Complexo de Endopeptidases do Proteassoma/metabolismo , Hidrogéis/metabolismo , Proteínas/metabolismo , Corpos de Inclusão/metabolismo , Microtúbulos/metabolismo
17.
Biomolecules ; 13(2)2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36830639

RESUMO

α-Synucleinopathies are spreading neurodegenerative disorders characterized by the intracellular accumulation of insoluble aggregates populated by α-Synuclein (α-Syn) fibrils. In Parkinson's disease (PD) and dementia with Lewy bodies, intraneuronal α-Syn aggregates are referred to as Lewy bodies in the somata and as Lewy neurites in the neuronal processes. In multiple system atrophy (MSA) α-Syn aggregates are also found within mature oligodendrocytes (OLs) where they form Glial Cytoplasmic Inclusions (GCIs). However, the origin of GCIs remains enigmatic: (i) mature OLs do not express α-Syn, precluding the seeding and the buildup of inclusions and (ii) the artificial overexpression of α-Syn in OLs of transgenic mice results in a burden of soluble phosphorylated α-Syn but fails to form α-Syn fibrils. In contrast, mass spectrometry of α-Syn fibrillar aggregates from MSA patients points to the neuronal origin of the proteins intimately associated with the fibrils within the GCIs. This suggests that GCIs are preassembled in neurons and only secondarily incorporated into OLs. Interestingly, we recently isolated a synthetic human α-Syn fibril strain (1B fibrils) capable of seeding a type of neuronal inclusion observed early and specifically during MSA. Our goal was thus to investigate whether the neuronal α-Syn pathology seeded by 1B fibrils could eventually be transmitted to OLs to form GCIs in vivo. After confirming that mature OLs did not express α-Syn to detectable levels in the adult mouse brain, a series of mice received unilateral intra-striatal injections of 1B fibrils. The resulting α-Syn pathology was visualized using phospho-S129 α-Syn immunoreactivity (pSyn). We found that even though 1B fibrils were injected unilaterally, many pSyn-positive neuronal somas were present in layer V of the contralateral perirhinal cortex after 6 weeks. This suggested a fast retrograde spread of the pathology along the axons of crossing cortico-striatal neurons. We thus scrutinized the posterior limb of the anterior commissure, i.e., the myelinated interhemispheric tract containing the axons of these neurons: we indeed observed numerous pSyn-positive linear Lewy Neurites oriented parallel to the commissural axis, corresponding to axonal segments filled with aggregated α-Syn, with no obvious signs of OL α-Syn pathology at this stage. After 6 months however, the commissural Lewy neurites were no longer parallel but fragmented, curled up, sometimes squeezed in-between two consecutive OLs in interfascicular strands, or even engulfed inside OL perikarya, thus forming GCIs. We conclude that the 1B fibril strain can rapidly induce an α-Syn pathology typical of MSA in mice, in which the appearance of GCIs results from the pruning of diseased axonal segments containing aggregated α-Syn.


Assuntos
Atrofia de Múltiplos Sistemas , Sinucleinopatias , Humanos , Camundongos , Animais , alfa-Sinucleína/metabolismo , Atrofia de Múltiplos Sistemas/patologia , Corpos de Lewy/metabolismo , Corpos de Inclusão/metabolismo , Sinucleinopatias/metabolismo , Oligodendroglia/metabolismo , Neuritos/metabolismo , Camundongos Transgênicos , Encéfalo/metabolismo
18.
Methods Mol Biol ; 2617: 17-30, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36656514

RESUMO

The temperature-inducible λpL/pR-cI857 expression system has been widely used to produce recombinant proteins (RPs), especially when it is necessary to avoid the addition of exogenous materials to induce the expression of recombinant genes, preventing contamination of bioprocesses. The temperature increase favors the formation of inclusion bodies (IBs). The temperature upshift could change the metabolism, productivities, cell viability, IBs architecture, and the host cell proteins inside IBs, affecting downstream to obtain the final product. In this contribution, we focus on the relationship between the bioprocesses using temperature increase as inducer, the heat shock response associated with temperature up-shift, the RP accumulation, and the formation of IBs. Here, we describe how to produce IBs and how culture conditions can modulate the composition and architecture of IBs by modifying the induction temperature in RP production.


Assuntos
Escherichia coli , Corpos de Inclusão , Proteínas Recombinantes , Escherichia coli/genética , Escherichia coli/metabolismo , Corpos de Inclusão/metabolismo , Proteínas Recombinantes/biossíntese , Temperatura
19.
Methods Mol Biol ; 2617: 49-74, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36656516

RESUMO

Catalytically active inclusion bodies (CatIBs) are promising biologically produced enzyme/protein immobilizates for application in biocatalysis, synthetic chemistry, and biomedicine. CatIB formation is commonly induced by fusion of suitable aggregation-inducing tags to a given target protein. Heterologous production of the fusion protein in turn yields CatIBs. This chapter presents the methodology needed to design, produce, and characterize CatIBs.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Biocatálise , Corpos de Inclusão/metabolismo
20.
Methods Mol Biol ; 2617: 31-47, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36656515

RESUMO

In bioprocesses, which target the production of recombinant proteins as inclusion bodies, the upstream process has a decisive influence on the downstream operations, especially regarding cell disruption, inclusion body purity and composition, and refolding yield. Therefore, optimization of the processes in fed-batch mode is a major issue, and screening for strains and process conditions are performed in highly labor, time and cost intensive shake flasks or multiwell plates. Thus, high-throughput experiments performed similar to the industrial operating conditions offer a possibility to develop efficient and robust upstream processes. We present here an automated platform for Escherichia coli fed-batch cultivations in parallelized minibioreactors. The platform allows execution of experiments under multiple conditions while allowing for real-time monitoring of critical process parameters and a controlled fermentation environment. By this, the main factors that affect yields and quality of inclusion bodies can be investigated, speeding up the development process significantly.


Assuntos
Escherichia coli , Corpos de Inclusão , Escherichia coli/metabolismo , Fermentação , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Corpos de Inclusão/metabolismo , Reatores Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...